
CI Playground

Nested Spec test: Project 0.5
Due: 8pm, Apr 1, 2019 Anytime! This is an individual project.

Spam spam spam.

Introduction

In Computer Science courses, project specifications tend to get really long. The intention for such a
long document is good — they usually provide all the information that a student would need to
successfully complete the project. However, this can also make it difficult for students to find
information quickly — they often get lost in the document, and cannot easily find the information
they need on the fly.

Infinite scroll…

In Winter 2019, a student wrote on the EECS 485 Piazza:

I think it would be very useful to have a table of contents in a sidebar for project specs to make
navigating the document easier. I often forget where specific sections are since the page is so
long.

This makes sense! Let’s solve the problem of long specs by adding a sidebar. We’ll do this by
writing JavaScript code that can be “plugged in” to the project spec webpages. The JavaScript code
we write will then generate a sidebar with a list of all the headings in the webpage.

(You’re going to write JavaScript code similar to the one that powers the sidebar on this page !)

Learning Goals

[1]

https://github.com/ci-playground/
https://web.archive.org/web/20180425010014/https://eecs485staff.github.io/p3-insta485-clientside/
https://web.archive.org/web/20190424183409/https://eecs280staff.github.io/p3-euchre/

This project is meant to be open-ended — it’s not autograded! At the end of this project, you should
feel comfortable doing the following:

Use and CSS to modify the design of a web page

Use JQuery and JavaScript to dynamically add content to the page

If you wish, you can implement the other features of the official Primer Spec, as described in the
optional Other Features section.

Contents

This spec will walk you through these parts:

Set up your computer

Add a hard-coded HTML sidebar

Write JavaScript to generate the sidebar contents

(Optional) Add other features

Setup

Follow these steps to get your development environment set up.

Install the dependencies

First make sure that you have Python 3 installed. If you’re on MacOS, you may have to brew

install python3 first.

Download the starter files

HTML

1

2

$ python3 --version # NOTE: Your Python version may be different.

Python 3.7.4

Download the starter files and untar them.

Preview the site on your browser

Have a look at index.html by opening the file in your favorite text editor. This file holds all the
 that represents this project spec. Notice how we’ve already included some CSS to make the

spec look like GitHub’s Primer theme.

Use Python’s built-in static fileserver to view this file on your browser. Open a console at the
directory of the starter files, and then run the Python server.

Visit http://localhost:8000 on your web browser. The page should look similar to this screenshot:

The spec already looks pretty good, but it could certainly be improved with a sidebar.

 Sidebar

In this section, you will add a sidebar to the page and hard-code its contents. Although we’ll
be writing some JavaScript code later in the project to generate the contents of the sidebar, it’s still a
good idea to decide how it’s going to look.

When you’re done with this section, your webpage will have a sidebar on the left, something like this
screenshot:

1

2

3

4

$ pwd

/users/seshrs

$ wget https://eecs485staff.github.io/primer-spec/demo/starter_files.tar.gz

$ tar -xvzf starter_files.tar.gz

HTML

HTML

1

2

3

$ pwd

/users/seshrs/primer-spec-spec

$ python3 -m http.server

HTML

HTML

http://localhost:8000/

Of course, your finished webpage doesn’t have to look like this. After all, this project isn’t
autograded! (In fact, feel free to showcase your project spec design with us! Create an issue on our
GitHub repository with a screenshot of your design.)

However, if you wish to emulate our design, here are some tips.

Where do I put the sidebar code?

We added our sidebar at the very top of the body tag, just before the the main content
begins. (The main content is contained in a div with class markdown-body .)

Our sidebar is fixed to the page with a constant width (we used 18em), height and padding. You
may need to push the main content a bit to make room for your sidebar. You should also consider
what would happen if there were a lot of items in the sidebar.

We recommend placing any CSS style definitions you need in spec.css .

Do I have to hard-code all the headings in the page?

No, but it’s a good idea to hard-code at least some of them, and randomly hard-code some other
items in the sidebar. In particular, make sure to have a mix of heading indentations in your sidebar
— consider styling each header level differently.

When you style the various header levels, remember that you’ll be writing JavaScript code soon that
will generate all of this inside the sidebar. (Hint: Use CSS classes to style the header levels
differently. Consider using the name of the header tag in the class name.)

CSS is hard. Help please?

Yeah, it has a bit of a learning curve. Google, StackOverflow and MDN are your best friends.
Experiment with different CSS style attributes to see what works best.

HTML

HTML
HTML

https://github.com/eecs485staff/primer-spec/issues

Pro tip: Use div (unstylyed containers) and classes liberally. They make it easy to apply styles to
collections of elements.

Pro tip: Use your browser’s “developer tools” to modify CSS styles on your page to dynamically see
the effects of your changes.

JavaScript Content Generator

The spec page looks great! But if you hard-coded all the headings on the page, you know how much
time it takes to hard-code the sidebar contents. Imagine having to do that for several different
project specs in a course website! It would be nice to automatically generate the sidebar contents
for any web page. Let’s use JavaScript to write this content generator.

(If you didn’t hard-code all the headings on the page, then your sidebar is still incomplete, so you
need to write this JavaScript generator anyway.)

Your generator will vary depending on your sidebar design. Simple sidebar designs (for
instance, just a list of all the headers with no differentiation) will require simpler generators. The
sidebar we use in the official Primer Spec is more complex because we group “child sections” within
divs to add further group styles.

Here are some suggestions for getting started.

Where should I write the JavaScript code?

Write your code in spec.js . This code is loaded and executed at the very end, after all other
content and scripts are loaded and executed. As a result, your code in spec.js will have access to
JQuery APIs.

JQuery APIs let you find elements using CSS selectors and easily manipulate them. For
example:

What should my code be doing?

The end goal is to generate a list of headings on the page, and place that in the sidebar. At its
simplest:

1. Find all “heading elements” on the page. Remember to look for all the different header
levels, from h1 through h6 .

HTML

HTML

1

2

$('primer-spec-sidebar').append('<h2>Contents</h2>');

$('primer-spec-topbar').toggleClass('primer-spec-sidebar-shown');

HTML

https://api.jquery.com/

2. Create a new element for each “heading” you find. This element could be a list
item, or simply a text paragraph.

3. Find the sidebar (or the place where you want to display the “table of contents”). Insert the
 elements that were created in step 2.

How do I add internal links?

While you’re traversing the list of “heading elements” on the page, notice how they all have an id

attribute. If you were to create an anchor (a) with href set to #{insert-id-here} , the

anchor would become an internal link. (Clicking the internal link will scroll the page to that section.)

(Optional) Other Features

If you’ve completed the rest of this spec, congratulations! You’ve just built the core foundation of the
official Primer Spec.

Primer Spec has several other features that you could consider implementing in your own project.
These reach goals are of varying difficulty, but could still be fun to work on. Choose your own
challenge!

Here are some of the optional features you could implement, in somewhat increasing order of
difficulty:

Collapsible Sidebar

Printer-Friendliness

Excludable Headers

Currently-Viewing Section

Mobile-Friendliness

LaTeX Support

Collapsible Sidebar

For some viewers, the sidebar can be visually distracting. It would be nice to allow viewers to hide
the sidebar. This can be achieved using something as simple as a toggle button. However, consider
emulating a better user experience similar to that of the official Primer Spec theme — using a
hamburger icon on the top-left corner.

One other thing to consider: Is simply hiding the sidebar enough? While styling the sidebar, if you
added CSS styles to push the main content to make room for the sidebar, then the content will look
off-centered if the sidebar is simply hidden.

HTML HTML

HTML

HTML

https://eecs485staff.github.io/primer-spec

Printer-Friendliness

Many students like to print project specifications for easy offline reference. Try printing your project
web page — how do you like its look?

The solution is to simply add a JavaScript event handler when the page is printed. This handler
should collapse the sidebar and recenter the main content, as described in the Collapsible Sidebar
section. For a better user experience, restore the sidebar to its original state after the page has been
printed.

Excludable Headers

Sometimes, it is useful to exclude certain headers from the sidebar for aesthetic reasons. For
example, on an official Primer Spec page:

This header will show in the sidebar

But this header will not

The above header element is excluded from the sidebar because it has the class primer-spec-

toc-ignore . Modify your JavaScript Content Generator to skip adding a section to the sidebar if the

corresponding header element has this class attribute.

Currently-Viewing Section

On an official Primer Spec page, viewers can see the section to which they have currently scrolled
— the header in the sidebar is highlighted.

To implement this feature, you will need to add a CSS class to indicate a “highlighted” section in the
sidebar, and will then have to write JavaScript to apply the “highlighted” class to the correct section
in the sidebar. Here’s a high level description of what the JavaScript code should do:

Add an event listener to scroll events. (After all, the “highlighted” section changes only when the
viewer scrolls the page.)

Use this algorithm to find the currently highlighted section.
Iterate over all the headings on the page.

First reset the sidebar by removing any occurrences of the “highlighted” class.

If the “top” of the heading element is above the “distance scrolled by the user”, then
“highlight” the corresponding sidebar section.

Stop iterating when remaining header elements are “below” the “distance scrolled by the
user”.

It might be easier to implement this using JQuery APIs than plain JavaScript.

https://eecs485staff.github.io/primer-spec
https://eecs485staff.github.io/primer-spec

Pro tip: If you implemented the “Exclude Section” feature above, you’ll have to take that into
accound when highlighting the sidebar sections.

Mobile-Friendliness

Sometimes, students and staff access project specifications from their mobile devices for quick
reference. Try accessing your site from a mobile device. (One way to do this is to use your
browser’s “developer tools” to simulate visiting your project webpage from a mobile device.)

Their are two primary problems with the current mobile user experience:

1. The sidebar pushes the main content into a long column of single characters.

2. To collapse the sidebar, the viewer must scroll to the toggle button.

There are multiple ways to solve these problems. The official Primer Spec theme addresses them by
doing the following only on mobile devices:

1. The sidebar is overlaid on top of the content, instead of pushing it.

2. The sidebar is collapsed by default. A toggle button is always shown on top. Clicking a sidebar
link, or clicking outside the sidebar, collapses the sidebar immediately.

As you go along, you may find that other changes are needed to improve the mobile experience. For
instance, since the sidebar collapses whenever a link is clicked, users no longer expect these
internal links to accumulate browser history. (Clicking the “back button” should not just take them to
a different section.) Continue exploring your project page from a mobile device to discover other
user experience issues.

LaTeX Support

Some project specs need to show Math formulae and equations. It’s possible to include these as
inline images, but it’s hard to maintain. Consider adding support for LaTeX in specs using MathJax.

LaTeX can be inserted in the middle of paragraphs (), or as separate Math blocks:

Feedback

∀x ∈ R

ϕ(x, y) = ϕ(
n

∑
i=1

xiei,
n

∑
j=1

yjej) =
n

∑
i=1

n

∑
j=1

xiyjϕ(ei, ej) =

(x1, … , xn)
⎛⎜⎝ϕ(e1, e1) ⋯ ϕ(e1, en)

⋮ ⋱ ⋮
ϕ(en, e1) ⋯ ϕ(en, en)

⎞⎟⎠⎛⎜⎝y1

⋮
yn

⎞⎟⎠

https://www.mathjax.org/

If you have suggestions for improving this spec/demo, please create an issue on the Primer Spec
GitHub repository. Alternatively, if you know exactly what you’d like to change, fork the repository
and create a Pull Request!

Acknowledgmenets

This project spec was originally written to demonstrate the Primer Spec theme by Sesh Sadasivam
in 2019.

The structure and style of the project was strongly influenced by EECS 485 project specifications
written by Andrew DeOrio.

1. This “project 0” spec was written in 2019, and Primer Spec has evolved a lot since then. The JavaScript

code powering the sidebar actually looks very different than what the starter files indicate. ↩

2. Did you know that you can write footnotes in Markdown?! (Documentation) ↩

[2]

https://github.com/eecs485staff/primer-spec/issues/
https://github.com/eecs485staff/primer-spec/blob/develop/docs/CONTRIBUTING.md
https://github.com/seshrs
https://github.com/awdeorio
https://kramdown.gettalong.org/quickref.html#footnotes

